首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1260篇
  免费   132篇
  国内免费   41篇
  2023年   14篇
  2022年   12篇
  2021年   50篇
  2020年   19篇
  2019年   42篇
  2018年   34篇
  2017年   20篇
  2016年   23篇
  2015年   49篇
  2014年   47篇
  2013年   54篇
  2012年   58篇
  2011年   68篇
  2010年   28篇
  2009年   21篇
  2008年   44篇
  2007年   39篇
  2006年   52篇
  2005年   34篇
  2004年   34篇
  2003年   36篇
  2002年   39篇
  2001年   28篇
  2000年   40篇
  1999年   36篇
  1998年   18篇
  1997年   16篇
  1996年   13篇
  1995年   17篇
  1994年   12篇
  1993年   13篇
  1992年   25篇
  1991年   16篇
  1990年   14篇
  1989年   16篇
  1988年   23篇
  1987年   21篇
  1984年   20篇
  1983年   19篇
  1982年   12篇
  1980年   12篇
  1979年   13篇
  1978年   16篇
  1977年   17篇
  1976年   20篇
  1974年   24篇
  1973年   13篇
  1972年   15篇
  1969年   11篇
  1968年   14篇
排序方式: 共有1433条查询结果,搜索用时 15 毫秒
91.
Changes in labile carbon (LC) pools and microbial communities are the primary factors controlling soil heterotrophic respiration (Rh) in warming experiments. Warming is expected to initially increase Rh but studies show this increase may not be continuous or sustained. Specifically, LC and soil microbiome have been shown to contribute to the effect of extended warming on Rh. However, their relative contribution is unclear and this gap in knowledge causes considerable uncertainty in the prediction of carbon cycle feedbacks to climate change. In this study, we used a two‐step incubation approach to reveal the relative contribution of LC limitation and soil microbial community responses in attenuating the effect that extended warming has on Rh. Soil samples from three Tibetan ecosystems—an alpine meadow (AM), alpine steppe (AS), and desert steppe (DS)—were exposed to a temperature gradient of 5–25°C. After an initial incubation period, soils were processed in one of two methods: (a) soils were sterilized then inoculated with parent soil microbes to assess the LC limitation effects, while controlling for microbial community responses; or (b) soil microbes from the incubations were used to inoculate sterilized parent soils to assess the microbial community effects, while controlling for LC limitation. We found both LC limitation and microbial community responses led to significant declines in Rh by 37% and 30%, respectively, but their relative contributions were ecosystem specific. LC limitation alone caused a greater Rh decrease for DS soils than AMs or ASs. Our study demonstrates that soil carbon loss due to Rh in Tibetan alpine soils—especially in copiotrophic soils—will be weakened by microbial community responses under short‐term warming.  相似文献   
92.
93.
Plant-parasitic nematodes need to deliver effectors that suppress host immunity for successful parasitism. We have characterized a novel isochorismatase effector from the root-knot nematode Meloidogyne incognita, named Mi-ISC-1. The Mi-isc-1 gene is expressed in the subventral oesophageal glands and is up-regulated in parasitic-stage juveniles. Tobacco rattle virus-induced gene silencing targeting Mi-isc-1 attenuated M. incognita parasitism. Enzyme activity assays confirmed that Mi-ISC-1 can catalyse hydrolysis of isochorismate into 2,3-dihydro-2,3-dihydroxybenzoate in vitro. Although Mi-ISC-1 lacks a classical signal peptide for secretion at its N-terminus, a yeast invertase secretion assay showed that this protein can be secreted from eukaryotic cells. However, the subcellular localization and plasmolysis assay revealed that the unconventional secretory signal present on the Mi-ISC-1 is not recognized by the plant secretory pathway and that the effector was localized within the cytoplasm of plant cells, but not apoplast, when transiently expressed in Nicotiana benthamiana leaves by agroinfiltration. Ectopic expression of Mi-ISC-1 in Nbenthamiana reduced expression of the PR1 gene and levels of salicylic acid (SA), and promoted infection by Phytophthora capsici. The cytoplasmic localization of Mi-ISC-1 is required for its function. Moreover, Mi-ISC-1 suppresses the production of SA following the reconstitution of the de novo SA biosynthesis via the isochorismate pathway in the cytoplasm of N. benthamiana leaves. These results demonstrate that M. incognita deploys a functional isochorismatase that suppresses SA-mediated plant defences by disrupting the isochorismate synthase pathway for SA biosynthesis to promote parasitism.  相似文献   
94.
MYB转录因子家族广泛参与了植物对干旱、盐渍、冷害等非生物胁迫的应答。为了深入研究秋葵[Abelmoschus esculentus(L.) Moench]中的MYB类转录因子,该研究以‘北海道1号’秋葵为研究对象,采用PCR方法克隆AeMYB1R1基因,并借助生物信息学进行特征分析;采用qRT-PCR荧光定量方法分析其表达模式及其在非生物胁迫下的表达特性。结果表明:(1)成功克隆获得1个秋葵AeMYB1R1基因;该基因包含1个1 056 bp的开放阅读框,编码352个氨基酸;序列对比和系统进化树结果显示,AeMYB1R1在植物进化过程中具有较高的保守性;AeMYB1R1蛋白分子量为37 891.57 Da,等电点为8.75,含有较多的谷氨酸和较少的色氨酸,以及较多潜在的磷酸化位点和糖基化位点。(2)结构分析显示,AeMYB1R1蛋白主要由α螺旋和无规则卷曲构成,无信号肽和跨膜结构,为疏水性蛋白;同时,氨基酸序列在第104至第156位含有一个保守结构域,表明其属于SHAQKYF类MYB家族转录因子。(3)qRT-PCR结果显示,AeMYB1R1基因在秋葵叶中的表达量最高,其次是根和茎,具有组织表达特性;与高温和低温胁迫相比,在盐胁迫和干旱胁迫中AeMYB1R1表达量更高,说明AeMYB1R1可能是秋葵抗盐和抗旱的关键转录因子。研究结果为AeMYB1R1基因在秋葵生长发育和抗逆机制中的功能研究奠定了理论依据。  相似文献   
95.
96.
97.
Long noncoding RNAs (lncRNAs) have been identified to have increasingly important roles in tumorigenesis, and they may serve as novel biomarkers for cancer therapy. Recent studies have demonstrated that lncRNA NBR2 (neighbor of BRCA1 gene 2), a novel identified lncRNA, is decreased in several cancers; however, the role of NBR2 in the development of osteosarcoma has not been elucidated. In our study, we found that NBR2 expression was downregulated in osteosarcoma tissues, and osteosarcoma cases with lower NBR2 expression exhibited a shorter overall survival time compared with those with higher NBR2 expression. NBR2 overexpression inhibited osteosarcoma cell proliferation, invasion, and migration but did not increase apoptosis. Furthermore, RNA-binding protein immunoprecipitation assays confirmed that NBR2 directly binds to Notch1 protein. Furthermore, overexpression of Notch1 in NBR2-overexpressing osteosarcoma cells reversed the effects of NBR2 on cell proliferation, invasion, migration, and epithelial-mesenchymal transition. The in vivo results showed that NBR2 overexpression inhibited tumor growth in nude mice that were inoculated with osteosarcoma cells. NBR2 overexpression also suppressed the messenger RNA (mRNA) expression of Notch1, N-cadherin, and vimentin and increased the mRNA expression of E-cadherin in the tumor tissues. These data indicated that NBR2 served as a tumor suppressor gene in osteosarcoma and inhibited osteosarcoma cell proliferation, invasion, and migration. The current study provides a novel insight and treatment strategy for osteosarcoma.  相似文献   
98.
Wei Y  Yu L  Bowen J  Gorovsky MA  Allis CD 《Cell》1999,97(1):99-109
Phosphorylation of histone H3 at serine 10 occurs during mitosis in diverse eukaryotes and correlates closely with mitotic and meiotic chromosome condensation. To better understand the function of H3 phosphorylation in vivo, we created strains of Tetrahymena in which a mutant H3 gene (S10A) was the only gene encoding the major H3 protein. Although both micronuclei and macronuclei contain H3 in typical nucleosomal structures, defects in nuclear divisions were restricted to mitotically dividing micronuclei; macronuclei, which are amitotic, showed no defects. Strains lacking phosphorylated H3 showed abnormal chromosome segregation, resulting in extensive chromosome loss during mitosis. During meiosis, micronuclei underwent abnormal chromosome condensation and failed to faithfully transmit chromosomes. These results demonstrate that H3 serine 10 phosphorylation is causally linked to chromosome condensation and segregation in vivo and is required for proper chromosome dynamics.  相似文献   
99.
100.
In the upwelling zone of the northeastern Pacific, cold nutrient-rich conditions alternate with warm nutrient-poor intervals on timescales ranging from months to millennia. In this setting, the abundances of Pacific sardine (Sardinops sagax) and northern anchovy (Engraulis mordax) fluctuate by several orders of magnitude, with sardine dominating during warm conditions and anchovy dominating during cool conditions. Two population models can explain the response of these fishes to adverse conditions. Under the basin model, species distributions contract to a central (optimal) range during population crashes. Expectations of this model may include a single range-wide population with a decline in genetic diversity on both sides of a central refuge. In contrast, the self-recruitment model invokes a series of local oceanographic domains that maintain semi-isolated subpopulations. During adverse conditions, some subpopulations cannot complete the life cycle within the local environment and are extirpated. Expectations of this model include some degree of population genetic structure and no clear gradient in genetic diversity. We examined mitochondrial DNA cytochrome b sequences to assess these competing models for anchovy (N = 196; 539 bp) and sardine (N = 107; 425 bp). The mitochondrial DNA gene genealogies are shallow but diverse for both species. Haplotype frequencies are homogeneous among subpopulations, but genetic diversities peak for both species along Baja California and adjacent southern California. Mismatch distributions and Tajima's D-values reveal distinctive signatures of population bottlenecks and expansions. Sardine haplotypes coalesce at approximately 241,000 years bp, with an initial female effective population size Nf0 = 0 followed by exponential growth to Nf1 = 115 million. Anchovy haplotypes coalesce at approximately 282,000 years bp, with an initial population size of Nf0 = 14,000, followed by exponential growth to Nf1 = 2.3 million. These results indicate a founder event for sardine and a severe population decline for anchovy in the California Current during the late Pleistocene. Overall, these data support the basin model on decadal timescales, although local recruitment may dominate on shorter timescales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号